Global planning in a multi-terminal and multi-modal maritime container port

Xavier Schepler¹ Eric Sanlaville² Sophie Michel² Stefan Balev²

¹École des Mines de Saint-Étienne (LIMOS)

²Normandy University (LITIS, LMAH)

17th ROADEF conference February 12, 2016

Work financed by region of Upper Normandy, French government and European Union (FEDER funding) within Passage Portuaire and CLASSE projects

			~			
· •	011	or	20	ho		~
~	av		- I -		• 11	= 1
			~~			

ROADER

Outline

Context

- Inter-port competition
- Multi-terminal systems
- Existing studies

Contributions

- Model and formulation
- Solving methodology
- Numerical experiments

Outline

Context

- Inter-port competition
- Multi-terminal systems
- Existing studies

Contributions

- Model and formulation
- Solving methodology
- Numerical experiments
- 3 Conclusion and perspectives

Inter-port competition

European container port system, Notteboom 2010

Two key competitive factors:

- Vessel turnaround time^a
- Quality of road, rail, river connections^b

^aTongzon and Heng 2005, TR part A. ^bWiegmans, Hoest, and Notteboom 2008.

Recent infrastructure investment, Le Havre

Port 2000

Recent infrastructure investment, Le Havre

Rail and river terminal

Multi-terminal systems

Evolution of container transport

- Surge of world traffic: from 84.6 millions TEUs in 1990 to 602 millions in 2012
- Expected modal shift from road to rail and river
- More transshipments (hub-and-spoke networks)

Multi-terminal systems

- Split of container traffic among terminals within the port
- Inter-terminal transport of containers
- Coordination of operations between terminals

Context

Existing multi-terminal studies

"Strategic allocation of cyclically calling vessels for multi-terminal container operators"^a

- Allocation of liner services to terminals
- Allocation of berthing and departure times to each service
- **Objective**: balance quay crane workload, minimize inter-terminal transport

^aHendriks, Armbruster, Laumanns, Lefeber, and Udding 2012.

"Terminal and yard allocation problem for a container transshipment hub with multiple terminals"^a

- Terminal and storage allocation of containers
- Objective: minimize intra-terminal and inter-terminal handling costs

^aLee, Jin, and Chen 2012.

Outline

Context

- Inter-port competition
- Multi-terminal systems
- Existing studies

Contributions

- Model and formulation
- Solving methodology
- Numerical experiments

General characteristics of the model

• Objective : minimize weighted tardiness of ships and trains

- Global model
 - Providing baselines for planning at an operational level
 - Grouping of trucks
 - Grouping of containers
 - Representation of inter-terminal container transport as a capacitated flow
- Multi-periodic
 - Equal-length periods
 - Target horizon: 5 days
- Constraints by vehicle type: ship, train, truck
- Constraints on container handling

Vehicles

Ship, train

- Ready time
- Due date
- Cost of tardiness
- Deadline

Ship

- Length
- Maximum number of cranes

Truck

Appointment system

Container batch

Definition

- Representation of containers in the model
- Set of containers transshipped between two vehicles

Constraints

- Unloaded (resp. Loaded) in one terminal
- At most one inter-terminal transport

Terminal resources

Figure: Handling zones and groups of cranes

- Storage capacity, in Twenty-foot Equivalent Units
- Container-processing capacity per period
- Inter-terminal transport, between each pair of terminals:
 - Transport capacity, in containers per period
 - Transport duration

Time-indexed formulation

Constraints on ships on the rightMany more constraints ...

$$\begin{split} \sum_{\substack{z \in V, k \\ z \in Z_r, t \in T_r}} & (\kappa_v, p_{z2}^l) \leq \kappa_z \quad \forall z \in ZA, \forall t \in T \\ \sum_{\substack{z \in Z_r, t \in T_r \\ z \in Z_r, t \in T_r}} & p_{z2}^l \leq 2 \quad \forall z \in ZA, \forall t \in T \\ z \in Z_r, t \in T_r \end{split} \\ \sum_{\substack{z \in Z_r, t \in T_r \\ z \in Z_r, t \in T_r}} & \sum_{\substack{z \in Z_r, t \in T_r \\ z \in Z_r, t \in T_r}} & p_{z2}^{rd} (n, h_{z2}^{d}) \leq \eta_z \quad \forall z \in ZA, \forall t \in T \\ \sum_{\substack{z \in Z_r, t \in T_r \\ z \in Z_r, t \in T_r}} & \sum_{\substack{z \in Z_r, t \in T_r}} & p_{z2}^{rd} (n, h_{z2}^{d}) \leq \eta_z \quad \forall z \in ZA, \forall t \in T \\ \sum_{\substack{z \in Z_r, t \in T_r \\ z \in Z_r}} & p_{z2}^{rd} (n, h_{z2}^{d}) \leq \eta_z \quad \forall g \in GA, \forall t \in T \\ \sum_{\substack{z \in Z_r, t \in T_r \\ z \in Z_r}} & u_{bc} + \sum_{b \in B, u_r} & b_{bc} \leq \sum_{\substack{z \in Z_r, t = n-1}} & p_{z2}^{rd} (p_{z1}^n, h_{z2}^{rd}) \quad \forall v \in VA, \forall t \in T \\ \sum_{\substack{z \in Z_r, t \in T_r \\ t \in T_r}} & p_{bc}^l \leq 1 \quad \forall v \in VA, \forall t \in T_v \\ m_v \geq (t - d_v) \cdot \left(\sum_{\substack{z \in Z_r, t \in T_r \\ t \in T_r}} & p_{bc}^l \right) \quad \forall v \in VA, \forall t \in [d_v + 1, \overline{d}_v] \\ - \sum_{\substack{z \in Z_r, t \in T_r \\ t \in T_r}} & p_{bc}^l \leq 1 \quad \forall v \in (VA \cap \overline{V}) \\ \overline{h}_{z}^l = \sum_{\substack{z \in Z_r, t \in T_r \\ t \in T_r}} & p_{bc}^l = 1 \quad \forall v \in (VA \cap \overline{V}) \\ \overline{h}_{z}^l = \sum_{\substack{z \in Z_r, t \in T_r}} & p_{bc}^l = 1 \quad \forall v \in (VA \cap \overline{V}) \\ p_{dz}^l = p_{dz}^l = 0 \quad \forall v \in VA, \forall z \in Z_v \\ p_{dz}^l = 0 \quad \forall v \in VA, \forall z \in Z_v \\ p_{dz}^l = 0 \quad \forall v \in VA, \forall z \in Z_v \\ p_{dz}^l = p_{dz}^l = 0 \quad \forall v \in VA, \forall z \in Z_v \\ p_{dz}^l = p_{dz}^l = 0 \quad \forall v \in VA, \forall z \in Z_v \\ p_{dz}^l = p_{dz}^l = 0 \quad \forall v \in VA, \forall z \in Z_v \\ p_{dz}^l = p_{dz}^l = 0 \quad \forall v \in VA, \forall z \in Z_v \\ p_{dz}^l = p_{dz}^l = 0 \quad \forall v \in VA, \forall z \in Z_v \\ p_{dz}^l = p_{dz}^l = 0 \quad \forall v \in VA, \forall z \in Z_v \\ p_{dz}^l = p_{dz}^l = 0 \quad \forall v \in VA, \forall z \in Z_v \\ p_{dz}^l = p_{dz}^l = 0 \quad \forall v \in VA, \forall z \in Z_v \\ p_{dz}^l = p_{dz}^l = 0 \quad \forall v \in VA, \forall z \in Z_v \\ p_{dz}^l = p_{dz}^l = 0 \quad \forall v \in VA, \forall z \in Z_v \\ p_{dz}^l = p_{dz}^l = 0 \quad \forall v \in VA, \forall z \in Z_v \\ p_{dz}^l = p_{d$$

Structural representation of the problem

Overview of the solving methodology

Limitations of exact methods

- State-of-the-art mixed-integer linear program solver
 - Solving of realistic small to mid-sized instances
- Extended formulation and branch-and-price
 - Solving of realistic small instances

Mixed-integer programming based heuristic approach

- Based on the structural decomposition of the formulation
 - Relax-and-fix
 - Restrict-and-fix

Relax-and-fix¹

Definition

- Heuristic for mixed-integer programs
- Requires an ordered partition of the set of integer variables
- At each iteration:
 - Relaxation of integrality constraints for all but the current subset
 - Solving of the resulting sub-problem
 - Fixing of the integer variables at their current values
- Partition of binary variables by vehicle type
- Possible subpartition according to how time windows intersect
- First ships, then trains, then trucks

¹Described by Wolsey 1998.

Restrict-and-fix

Definition

- Requires an ordered partition of the set of variables
- At each iteration:
 - Additional subset of integer and continuous variables
 - Fixing of its integer variables by solving a subproblem
 - The subproblem includes:
 - Current and all previous subsets of variables
 - Constraints containing only theses variables (other linear constraints are relaxed)
- Continuous variables are fixed at the last iteration
- Constraints may be added to a subproblem to increase feasibility

Restrict-and-fix - subproblem 1

Restrict-and-fix - subproblem 2

Restrict-and-fix - last subproblem

General characteristics of the instances

- Due date = ready time (minimize weighted turnaround time)
- Period length of 2 hours
- Arrivals of vehicles over 5 or 7 days
- Four terminal configurations:
 - 1, 2 or 3 compact terminal(s)
 - 3 terminals dedicated to sea and road plus 1 terminal dedicated to inland waterway and rail.
- 3 annual levels of traffic:
 - I millions of TEUs²
 - 1.5 millions of TEUs
 - Le Havre: 2.5 millions of TEUs

²Twenty-foot Equivalent Units

Contents of the instances

Table: Vehicles and container batches by level of traffic

Traffic	Horizon	Vehicle type	Batchoc			
Itallic	110112011	Ship	Train Truck		Datches	
1	5 days	4 mother vessels 10 feeder vessels 29 inland-waterway barges	17	8 groups	183.4	
1	7 days	5 mother vessels 14 feeder vessels 40 inland-waterway barges	24	10 groups	298.6	
1.5	5 days	6 mother vessels 15 feeder vessels 43 inland-waterway barges	26	12 groups	286.7	
2.5	5 days	15 mother vessels 24 feeder vessels 71 inland-waterway barges	42	30 groups	574	

^a annual millions of TEUs

^b average number

Xavier Schepler

Numerical results

Comparative results

- Methods:
 - Direct solving by a solver
 - Relax-and-fix:

between 5 and 7 subproblems for ships,

- 1 subproblem for trains,
- 1 subproblem for trucks
- Restrict-and-fix: subproblem for ships solved by relax-and-fix
- Solver: IBM ILOG CPLEX 12.6
- Time limit of 7200 s.
- CPU at 3 Ghz, 8 Gb of RAM

Numerical results: 1 terminal, 1 annual mⁿ of TEUs

Instance		CPLEX			Relax-and-fix		Restrict-and-fix	
	time	LR	LB	value	time	value	time	value
I_1_1_5 #1	54.3	74927.3	82224	82224	21.8	82224	18.1	82224
I_1_1_5 #2	82.3	75887.1	84046	84046	13.5	84046	9.1	84046
I_1_1_5 #3	93.2	77974.9	88312	88312	67.7	88312	41.1	88312
I_1_1_5 #4	111.8	77273.3	85724	85724	43.7	85724	18.2	85724
I_1_1_5 #5	89.9	77683.4	85556	85556	24.5	85556	21.2	85556
I_1_1_7 #1	7200	111536.7	123641	123708	96.2	123708	51.3	123708
I_1_1_7 #2	7200	113195.9	125753	127656	151.1	127656	87.2	127656
I_1_1_7 #3	2269.9	115650.8	128966	128966	83.1	128966	65.3	128966
I_1_1_7 #4	499.1	114252.7	129310	129310	70.7	129310	57.3	129310
I_1_1_7 #5	783.8	118329.8	133408	133408	140.1	133408	121.2	133408

Numerical results: 2 terminals, 1.5 annual m^{ns} of TEUs

Both heuristics provide solutions to the 25 instances

- 133276,8 on average for relax-and-fix
- 133303,7 for restrict-and-fix
- Average relative gap value with the lower bound < 3%
- OPLEX
 - solves to optimality 4 instances,
 - provides feasible solutions to 4 others.
- Average running times:
 - 6302 s. for CPLEX
 - 988 s. for relax-and-fix
 - 801 s. for restrict-and-fix

Numerical results: 3 terminals, 2.5 annual m^{ns} of TEUs

- Only restrict-and-fix provides solution to the 25 instances
 - Average relative gap value with the lower bound < 11%
- Relax-and-fix
 - provides solutions to 20 instances.
- OPLEX
 - provides feasible solutions to 3 instances.

Decrease of weighted turnaround time

2 terminals, 1.5 annual mns of TEUs

Allowing 5% or 10% of the containers to use ITT^{*a*}: 4% decrease of the weighted turnaround time.

^aInter-Terminal Transport

3 terminals, 2.5 annual m^{ns} of TEUs

- Allowing 5% of the containers to use ITT: 5% decrease of the weighted turnaround time.
- Allowing 10%:
 6% decrease.

In both cases, increasing the capacity of ITT from 30 containers per hour between any couple of terminals to 60 doesn't notably further reduces weighted turnaround time.

Numerical results: 4 terminal, 2.5 annual m^{ns} of TEUs

Instance	CPLEX			Relax-and-fix		Restrict-and-fix		
	time	LR	LB	value	time	value	time	value
I_4_2.5_5 #1	7200	188722	204218		4870.7	221642	153.1	217046
I_4_2.5_5 #2		187303.6	205309		3901.9	218240	517.3	214936
I_4_2.5_5 #3		198707.4	214847		1113.4	230456	882.1	227950
I_4_2.5_5 #4		200690.6	217192		4837.4	232036	791.1	225922
I_4_2.5_5 #5		199070.4	220396		1540.8	231752	721.2	228510

Outline

Context

- Inter-port competition
- Multi-terminal systems
- Existing studies

Contributions

- Model and formulation
- Solving methodology
- Numerical experiments

Conclusion

- First global model for a multi-terminal multi-modal maritime port
- Objective: minimize weighted tardiness
- Solving methodology
 - Direct solving by a state-of-the-art solver
 - Relax-and-fix
 - New heuristic: restrict-and-fix
- Numerical results
 - Close to optimal solution to all instances by restrict-and-fix
 - Evaluation of the decrease of weighted turnaround time that inter-terminal container transport can achieve

Perspectives

- Application of restrict-and-fix to other problems
 - Research and study of adequate structures
- Robust or stochastic optimization
 - To deal with uncertainties, for example on vessel arrivals