

Comparaison de différentes approches de résolution par méta-heuristique pour le RCPSP multi-site

Arnaud Laurent

27 fevrier 2015

- 1 Présentation du problème
- 2 Résolution approchée
- 3 Résolution
- 4 Créations d'instances
- 5 Expérimentations
- 6 Conclusion et perspectives

### Sommaire

- 1 Présentation du problème
  - Le RCPSP
  - Contexte multi-site
- 2 Résolution approchée
- 3 Résolution
- 4 Créations d'instances
- 5 Expérimentations
- 6 Conclusion et perspectives

# L<sub>Le RCPSP</sub>

#### Référence

«Multiproject scheduling with limited resources: A zero-one programming approach» par Pritsker, Watters and Wolfe, 1969 «Resource-constrained project scheduling problem: Notation, classification, models and methods» par Brucker, Drexl, Möhring, Neumann et Pesch, 1999

- Ordonnancer un ensemble de tâches qui ont une durée déterminée
- Les tâches nécessitent des types de ressources en une certaine quantité
- Contraintes de précédence

#### **Notations**

- N Nombre de tâches
- $P_j$  Ensemble de tâches qui doivent précéder j = 1, N
- $p_i$  Durée de la tâche j=1, N
- K Nombre de types de ressources
- $R_k$  Nombre de ressources de type k = 1, K
- ${\it r}_{j,k}$  Nombre de ressources de type k=1, K nécessaires pour la tâche j=1, N
  - T Nombre de périodes maximum

### Multi-Sites RCPSP

#### Référence

« Une extension du RCPSP pour la mutualisation de ressources entre plusieurs sites : le Multi Location RCPSP », par Arnaud LAURENT, Laurent DEROUSSI, Nathalie GRANGEON, Sylvie NORRE, 2014

- Ajout de la notion de site
- Ajout de distance entre les sites entrainant des temps de transfert
- Deux cas où un temps de transfert s'applique :
  - Une contrainte de précédence entre deux tâches
  - Un déplacement d'une ressource
- Différentiation entre les ressources fixes et les ressources mobiles

### Multi-Sites RCPSP

#### Référence

- « A branch-and-bound procedure for the multi-mode resource-constrained project scheduling problem with minimum and maximum time lags », par Roland Heilmann, 2003 « Tabu search for multi-mode resource-constrained project scheduling with schedule-dependent setup times », par Marek Mika and Grzegorz Waligora and Jan Weglarz, 2008
  - MRCPSP/max qui est un multi-mode RCPSP avec des time lags minimaux et maximaux dépendant des modes.
  - MRCPSP-SDST qui est un multi-mode RCPSP avec des temps de montage dépendant de la séquence.

### Nouvelles notations

- $M_{k,r}=1$   $r=1,R_k$  de type k=1,K, si la ressource est mobile, 0 si elle est fixe
  - 5 Nombre de sites
- $\delta_{s,s'}$  Distance en temps entre le site s=1,S et le site s'=1,S
- $loc_{k,r}$  Site d'appartenance de la ressource  $r = 1, R_k$  de type k = 1, K

- Présentation du problème
  - Contexte multi-site

### Exemple

- 7 tâches
- 4 types de ressources

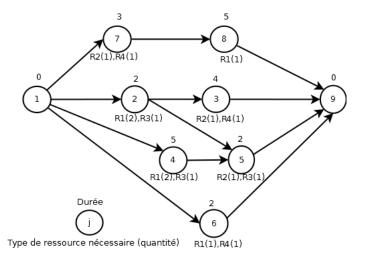
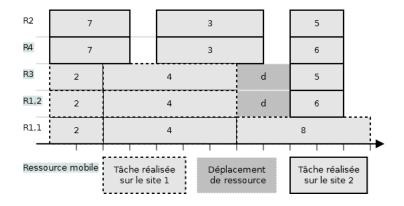

|      | Туре | Mobilité | Site |
|------|------|----------|------|
| R1,1 | 1    | Fixe     | 1    |
| R1,2 | 1    | Fixe     | 1    |
| R2   | 2    | Fixe     | 2    |
| R3   | 3    | Mobile   | Χ    |
| R4   | 4    | Mobile   | Χ    |

Table : Liste des ressources disponibles

- 2 sites
  - Les sites sont distant d'une durée de transport de 2 périodes

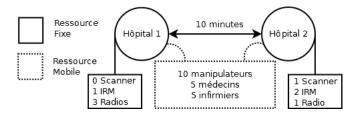

- Présentation du problème
  - Contexte multi-site

### Exemple



Présentation du problème

Contexte multi-site




Présentation du problème

Contexte multi-site

# Un exemple d'application : la CHT

La Communauté Hospitalière de Territoire (CHT)



Une liste de patients

#### But

Ordonnancer toutes les opérations et affecter les ressources

### Sommaire

- 1 Présentation du problème
- 2 Résolution approchée
  - Codages des solutions
- 3 Résolution
- 4 Créations d'instances
- 5 Expérimentations
- 6 Conclusion et perspectives

# Éléments des codages et systèmes de voisinage

- Une liste ordonnée  $\sigma$  de tâches
- Une liste / d'affectations de chaque tâche à un site
- Une matrice d'affectation a des ressources aux tâches
- lacksquare Le codage  $\sigma$
- **Le** codage  $\sigma$ , l
- Le codage  $\sigma$ , I, a

- Résolution approchée
  - Codages des solutions

### Schedule Generation Scheme

#### SGS

A chaque codage correspond un SGS (Schedule Generation Scheme). Le principe de base est d'ordonnancer au plus tôt chaque tâche dans l'ordre  $\sigma$ 

- lacksquare Détermine la date de début des tâches pour le codage  $\sigma$ , l, a
- Détermine l'affectation des ressources et la date de début des tâches pour le codage  $\sigma$ , l
- lacktriangle Détermine l'affectation des ressources, la localisation des tâches et la date de début des tâches pour le codage  $\sigma$

- Résolution approchée
  - Codages des solutions

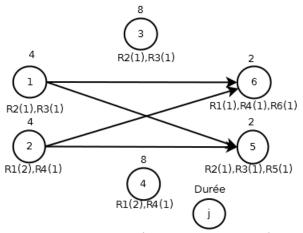
# Les trois différents systèmes de voisinage

Les systèmes de voisinage seront donc :

- Un mouvement V1 pour modifier  $\sigma$  : Insertion d'une tâche dans  $\sigma$
- Un mouvement V2 pour modifier / : Modification d'une affectation d'un site pour une tâche
- Un mouvement V3 pour modifier a : Modification d'une affectation d'une ressource pour une tâche

- Résolution approchée
  - └Codages des solutions

## Exemple

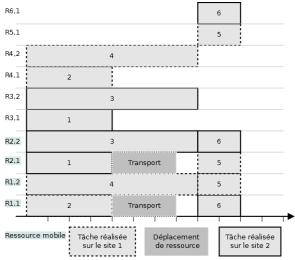

6 tâches

|              | Туре | Mobilité | Site |
|--------------|------|----------|------|
| R1,1 et R1,2 | 1    | Mobile   | Χ    |
| R2,1 et R2,2 | 2    | Mobile   | Χ    |
| R3,1 et R3,2 | 3    | Fixe     | 2    |
| R4,1 et R4,2 | 4    | Fixe     | 1    |
| R5           | 5    | Fixe     | 1    |
| R6           | 6    | Fixe     | 2    |

- 2 sites
  - Les sites sont éloigné d'une durée de transport de 3 périodes

- Résolution approchée
  - Codages des solutions

## Graphe de précédence




Type de ressource nécessaire (quantité)

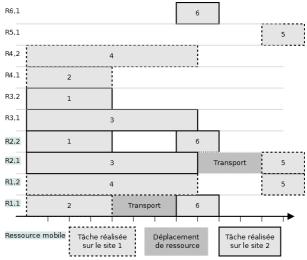
Résolution approchée

Codages des solutions

# Une solution optimale



# Un codage pour cette solution


|         | Position dans $\sigma$ | 1      | а              |
|---------|------------------------|--------|----------------|
| Tâche 1 | 1                      | Site 2 | R2,1 R3,1      |
| Tâche 2 | 2                      | Site 1 | R1,1 R4,1      |
| Tâche 3 | 3                      | Site 2 | R2,2 R3,2      |
| Tâche 4 | 4                      | Site 1 | R1,2 R4,2      |
| Tâche 5 | 6                      | Site 1 | R1,2 R2,1 R5,1 |
| Tâche 6 | 5                      | Site 2 | R1,1 R2,2 R6,1 |

Résolution approchée

Codages des solutions

- Résolution approchée
  - Codages des solutions

# Une solution optimale pour le codage $\sigma, I$

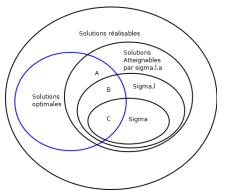


Résolution approchée

Codages des solutions

# Un codage pour cette solution

|         | Position dans $\sigma$ | 1      |
|---------|------------------------|--------|
| Tâche 1 | 1                      | Site 2 |
| Tâche 2 | 2                      | Site 1 |
| Tâche 3 | 3                      | Site 2 |
| Tâche 4 | 4                      | Site 1 |
| Tâche 5 | 6                      | Site 1 |
| Tâche 6 | 5                      | Site 2 |


 $\Rightarrow$  Le vecteur  $\sigma$  et I de cette solution sont les mêmes que pour la solution optimale de l'instance vu précédemment.

- Résolution approchée
  - └Codages des solutions

### Accessibilité

#### Théorème

Les codages  $\sigma$  et  $\sigma$ , I ne respectent **pas toujours** l'accessibilité à une solution optimale.  $B, C = \emptyset$ 



### Sommaire

- 1 Présentation du problème
- 2 Résolution approchée
- 3 Résolution
- 4 Créations d'instances
- 5 Expérimentations
- 6 Conclusion et perspectives

### La recherche locale itérée

```
Algorithme 6 : Algorithme de principe de la recherche locale itérée
  Entrées : X_0 : Solution initiale aléatoire et réalisable;
  Variables: X*: Meilleure solution trouvée:
              X': Solution voisine:
  Initialisation : X^* := \text{Recherche locale sur } X_0;

    Debut

      Tant que Test d'arrêt est faux faire
       X' := Perturbation de X^*;
        X' := Recherche locale sur X';
          X^* := \text{Critère d'acceptation de } X' par rapport à X^* en prenant en
         compte l'historique;
      Fintq
      Retourner X*
6 Fin
```

### Les paramètres

- Le test d'arrêt : Le temps
- Le critère d'acceptation : Type recuit simulé
- Critère d'arrêt de la recherche locale : Nombre maximum d'itération
- Le voisinage utilisé sera l'application équiprobable d'un des différents mouvements possibles
- Perturbation : Application de 4 fois le système de voisinage

### Sommaire

- 1 Présentation du problème
- 2 Résolution approchée
- 3 Résolution
- 4 Créations d'instances
- 5 Expérimentations
- 6 Conclusion et perspectives

#### Les instances

- Instances de la littérature de la PSPLIB
- 480 instances par nombre de tâches différent (30, 60, 90, 120)
- Un grand nombre des instances où la solution optimale est connue
- La solution optimale des instances du RCPSP est une borne inférieure pour notre problème

On ajoute à ces instances les caractéristiques suivantes :

- 1, 2, 3 sites
- Une ressource a une probabilité de 50% d'être fixe.
- La distance entre deux sites varie de 1 à 10 périodes
- Affectation des ressources fixes aux sites aléatoirement

### Sommaire

- 1 Présentation du problème
- 2 Résolution approchée
- 3 Résolution
- 4 Créations d'instances
- 5 Expérimentations
- 6 Conclusion et perspectives

## Protocole expérimental

- On utilise le meilleur paramétrage pour chaque codage
- On résout les instances avec les trois codages en limitant la résolution à 30 minutes
- On réplique la résolution 10 fois par instances

## Résultat sur une instances (30 tâches)

#### Résultat obtenus sur 30 minutes d'exécution

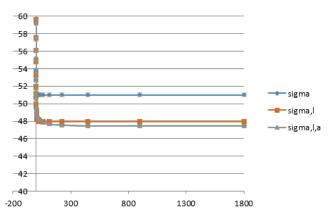
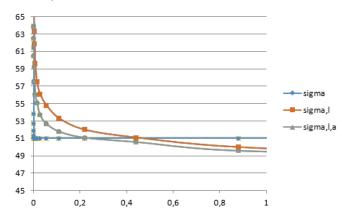
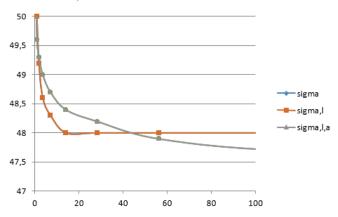




Figure : Makespan moyen obtenu dans le temps(s) pour chaque codage

### Résultat sur une instances : Intersection $\sigma$ , $I/\sigma$

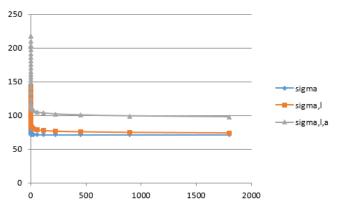
Zoom sur la première seconde d'exécution




 $\Rightarrow$  au delà d'une seconde d'exécution le codage  $\sigma$  ne donne plus les meilleurs résultats.

4 日 > 4 周 > 4 至 > 4 至 >

### Résultat sur une instances : Intersection $\sigma$ , $I/\sigma$ , I, a


Zoom sur les 100 première secondes d'exécution



 $\Rightarrow$  au delà de 100 secondes d'exécution le codage  $\sigma$ , I ne donne plus les meilleurs résultats.

#### Résultat sur les 480 instances de 30 tâches

#### Résultats obtenus sur les 30 minutes d'exécution



 $\Rightarrow$  Pas de convergence en 30 minutes. Le codage  $\sigma$  donne les meilleurs résultats en moyenne, même après 30 minutes de résolution.

### Sommaire

- 1 Présentation du problème
- 2 Résolution approchée
- 3 Résolution
- 4 Créations d'instances
- 5 Expérimentations
- 6 Conclusion et perspectives

### Conclusion et perspectives

- Proposition de trois méthodes approchées
- Production d'une librairie d'instances basée sur la PSPLIB
- Comparaison des trois codages et de leur intérêt dans le temps

#### Objectifs

- Comparer nos résultats avec ceux de la littérature comme borne inférieure
- Travailler sur le problème dans un contexte stochastique

### Conclusion

Je vous remercie de votre attention, avez vous des questions?