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Motivation

Classical Scheduling:

@ Set of jobs to be scheduled on one (several) machine(s)
@ Each job has a set of characteristics

@ One objective function to be optimized

Several models and | One Objective function:
Minimize:

efficient methods

N Makespan (C,., )
> j‘> _l/> Or Tardy job (> Uj)
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Motivation

Multicriteria scheduling problems (7 kindt & Billaut 2005)

@ Only one objective function is not always sufficient

@ Good solutions with respect to one objective may be bad with
respect to other objectives

@ Finding solutions of good compromise

Several objective functions:
Makespan (C,.., )
And Tardy job (3U;) and ...
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Motivation

Sometimes... Multi-agent Scheduling

v Jobs are not equivalent and applying the same measure to all
jobs is not useful.

v Each subset of jobs is assessed according to objective function,
where jobs are in competition for the use of the machines.

v This is a multi-criteria, multi-agent scheduling problem, where
a new type of compromise has to be obtained.

Problems noted “multi-agent scheduling problems " (Agnetis
et al. 2014).
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Multi-agent scheduling
v

2 Agent B don't want téIhave the late

Agent A yants minimize completion time

Objective: schedule jobs on
machines to

Min(f?, f2)
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Scenarios for multiagent
(Agnetis et al. 2014)

COMPETING A 1B
(CO) J"NJ" =0
INTERFERING | 3B — JA _ 3G | f
(IN) — ._
NON-DISIOINT | 3" NIP 2O
ND .
( ) ] G — ] A U J B
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Multiagent: definition and notations

The book “multi-agent scheduling problems " (Agnetis et al. 2014)
v" Groups of jobs are identified by their owned ‘agents’k, Vk € {1,2, ... K}

v’ Agent k have the jobs Jf, ..., Jk € ] ¥, objective function f*, vk € {1,2, ...K},
v J¥ : the job number j of agent k

v p}‘ . processing time of job number j of agent k

v df : due date of job number j of agent k

v Cj" . completion time of job number j of agent k
v’ Ck . : makespan of agent k

v Uj" : number of tardy jobs in position job j of agent k.

v The tardiness penalty Ujk = 0if Cjk < d]l‘(early), 1 otherwise (tardy)
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‘Motivation EIULTEEY
Problem definition and notations

1(P,)|ND,d?, Y UP < 1|CA,,

In case two agents: Aand B In case Non — disjoint:
JAuJB £ ¢

Agent, Agentp

= A4, .04 ) - [ o]

={2.J5, ... J5.}

Solution
I\é/ll duedate d” C,f,‘ilax makespan of agent A

Mm Early jObS

Z U]B - QB
Total number of tardy jobs of agent B

The studied problem is denoted by P,,|ND, d”, U]B < Q| CA ...
This problem is NP-hard (Sadi et al. 2014)
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Structure of non-dominated solution

Proposition:
If problem P, |ND, d?,Y U” < Q| C4 ,.admits a feasible
solution, then it is possible to build an optimal solution such that on

each machine we have:
1. Jobs of agent B appear in SPT order.
2. Tardy job J; within J®\{J # n J B} is scheduled after the jobs of

agent A.

early jobs tardy jobs . JANB

.-D:D: D ]B\U A n] B}
5 - e
B o 1 Humerem

o Tea, teo
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WETEEIMEEITEIN Resolution approaches
Integer programming formulation 1

(MILP — Assign) Min CA

‘max

The first one, 1s based on

.. . (N 1 =1, VJ; e 1
precedence decision variables im0 T i€J (1)
P : Ci = i Pk X Yjk >pi, YV, edJ 2
X xi,j: 1 |f]0b]] IS ! Ek ! ! ! ! (2)
scheduled on machine M;; O Yik + Yk, <1, VJ,JreJ (3)
otherwise. . <1 ViLded (&)
— 1 f: . Tig T Tik — Yjk — Yk,j = 1 js Jk
‘:’yj,k—llfJOb-]j IS ' ' 1 i;l,...,m
executed before job J;, on th? ) Tig T Yik — Tik <1, VJ;eJ (5)
same machine; 0 otherwise. i=1,...,m
% z;=1ifjob J; is Yik + Yk = Yjk <1, VJj,Ji, Ji€ T (6)
scheduled aft_er Its due date C; —dp — HV 2, <0, V.J,eJB (7)
dB; 0 otherwise.
EJjeJB Zj <@g (8)
Tijs Yiks 2 € {0,1},Cj 2 p; Vi, JJkedJ (9
r=1,...,m
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WETEEIMEEITEIN Resolution approaches
Integer programming formulation 2

The second, 1s based on time

_ _ > ) (MILP — Time) Min CA
Indexing decision variables

Trirr

o c.
® Sjt take_s as new S _1, Vhegh (10)
binary variables that
are time indexed. s; Y0 e Dlmax{0d—p; 1) i <m, VE=0,...,T (11)
takes as a value 1 If .
job J; starts its st} { Cima =20 (t+pi)sje 20, V5egt  (12)
rocessing at time t; O —p;
gtherwiseg S Fi(t+pi)sje— HVz; <dB, VJjeJP (13)
Thereby, we have > seqn % <Qp, (14)
n x (T + 1) binary
variables, which is s €{0,1},2; € {0,1}, vJeJ t=0,...,T,(15)

pseudo polynomial.
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WEIEINREITTIN Resolution approaches
Polynomial heuristic H1

Problem P,,|ND, d”, Y U < Q| Cipay is NP-hard (Sadi et al. 2014)

Algorithm 1 LPT-FAM Complexity: O(ny log(ny) + (np log(ng))

8:

Sort jobs in J? according to SPT rule:

: Set BE={J{ ..., J };

B—Wp

Schedule the jobs in F using LPT-FAM;

: if at least one job is late then

Stop; // this heuristic cannot find a feasible solution

- else

Schedule jobs in J*\{J* N E} using LPT-FAM;
Schedule jobs in JP\{J” N E} using LPT-FAM;
Return the resulting solution;

SPT: The Shortest Processing Time first
LPT: The Longest Processing Time first
FAM: Assign job to the First Available Machine.
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Polynomial heuristic H1

}B‘)Jﬂl
’) ‘v Set E(early jobs) ={J{, ....Jny—05} © XU/ < Qg

PnIND,d", ZUB < Qp| Cihax
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LEIEISREEITIIN Resolution approaches
Polynomial heuristic H1

jobs X

space Y

—

5 \ 5 A

Set E(early jobs) = {Jf, ... J5,-0s} © XU’ < 05 CA,.

To improve this heuristic with the main idea:
“we try to swap the jobs if possible”
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WEEEEIMICETTEIN Resolution approaches

Algorithm 2 LPT-FAM with jobs rescheduling

Sort the jobs in JZ according to SPT rule;
2: Set E={J{ ...,J2 _o,}
Set S = EUJ* in LPT order;
4: Set E” = 0; // the number of early jobs;
while S # () and E® < np — Qp do
6: Schedule J; using LPT-FAM;improve

if J; is late then

8: Remove largest job Ji already scheduled, Ji ¢ F;
Put S = S\{Jk}
10: Reschedule J; using LPT-FAM;
else
12: Set EP = E® +1;

if B8 —np — @p then
14: Schedule jobs of J# not already scheduled using LPT-FAM;

Return the resulting solution;
16: else

Stop; // This heuristic cannot find a feasible solution;
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WEIEINREITTIN Resolution approaches
Polynomial heuristic H2

A

T SetS={%F .. JE o, U4

PmlND, dB,Z UB < QBl C#lax

dB
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LEIEISREEITIIN Resolution approaches
Pseudo-polynomial heuristic

These heurictis base on Dynamic Programming algorithm (DP) proposed to slove
optimally classical scheduling problem B, ||C;nqx (Blaziwicz et al. 2007)

Algorithm 3 Heuristic based on dynamic programming

Sort the jobs in J? according to SPT rule;

Set E={J{...,J2 _o.h

Optimally solve problem P2||Cynqx considering only jobs of E by the DP
if Craz(E) > d® then

Stop; // This problem has no feasible solution;

Optimally solve problem P2||C,.q. considering only jobs of (JA\{J* N E}) by the

DP and taking into account no-availability machines at time zero (jobs of F have

been already scheduled)

7: Optimally solve problem P2||Ch.qz considering only jobs of (JZ\{J*UFE}) by the
DP and taking into account no-availability machines at time zero (previous jobs
have been already scheduled)

8: Try to schedule tardy jobs of agent B earlier without increasing makespan value
by moving them to the left before d”

9: Return the resulting solution;

A solution is given in O(n? + n(UB)?, where UB is the upper bound of the makespan
of agent A.
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WEIEINREITTIN Resolution approaches
Pseudo-polynomial heuristic H3

JI‘)Jﬂ
’) Yy Set E(early jobs) = {]1 ) o ]nB QB} = YU < 0;

m|ND d®, ZUB < Qp| Cihax
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Pseudo-polynomial heuristic H4

Algorithm 4 LPT-FAM-Dynamic programming  Complexity: O(nlog(n) + n(UB)?

Sort the jobs in J? in SPT order;
Set £E={JC...,JF _o.}
Set S = FEUJ* in LPT order;
Set E¥ = 0; // the number of early jobs;
while S # 0 and E® < np — Qg do
Schedule J; using LPT-FAM,
if J; is late then
Remove Ji the largest job already scheduled;
Put S = S\{Jx}
Reschedule J; using LPT-FAM;
else
Set EP = EB + 1.
. if B =np — Qp then

(WS-
o= o9

[
Lo

14: if some jobs of E? are late then

15: Stop; // This problem has no feasible solution;

16: else

17: Use DP to schedule the jobs of J* not already scheduled;
18: Use DP to schedule the jobs of J not already scheduled;

19: Return the resulting solution;
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Polynomial heuristic H4

’) T SetS={J{, .. Jp-qp} U J*

 Use Dynamic programming | 1
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Computational results

v ne {10'20'30'40,50,60,70} MI1LP-Time MILP-Assign

v' Fixe time limit is 1h for each value Q , CPU 15*| CPU S*|
v M = 2 identical machines

v" 30 instances are generated for each n 10 0.01 2.37 1.281 2.87
v" For each instance, the jobs are 20 0.69 4.07 708.39  4.07
assigned randomly to the agents 30 265 4.87 _ )

" aq=1if/;e]\J4uJ "}
= a=2if[je{f U] "}
" g = 3 if]j e]J A\{] A uj B} 510} 78.00 7.50 - -
= Processing time p;'= {1; 10} 70 4664.16  9.766
Table 1: Comparison of the performances of the MILPs.

40 12.20 6.13 - -

|S*|: the cardinality of the exact Pareto front

Coded with C, Cplex 12.6.2, run in CPU Intel Core 15 2.4Ghz 8GB RAM
The time indexed formulation is better than the assigned formulation, since its solves
Instances with 70 jobs in 1 hour and 18 minutes on average
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Computational results

10|
0. 81
=)
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| I |
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(a) 20 jobs

B
j

U

20

15
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(b) 30 jobs

Example of the obtained Pareto fronts with instances with 20, 30 jobs.
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Computational results

B
b

YU

25

20

15

10

S Uf

|
95 100 105 110 115
CA

(c) 40 jobs

35

30 -

25 |-

20

15

85

]
90 95 100 105 110
C.A

(d) 50 jobs

Example of the obtained Pareto fronts with instances with 40, 50
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Computational results

|S|: (the cardinality of the near Pareto front)

H1 12 H3 H4

n |CcPU S| CPU S| CPU S| CPU S|

10 | 0.00 2.87 0.00 2.43 0.000| | 2.97 0.000{ | 2.53
20 | 0.00 5.63 0.00 4.07 0.000| | 5.40 0.000{ | 4.03
30 | 0.00 7.50 0.00 4.90 0.001| | 7.13 0.000{ | 4.87
40 | 0.00 9.67 0.00 6.20 0.002| | 9.30 0.001| | 5.97
50 | 0.00 | |11.53 0.00 7.27 0.006| | 11.40 0.003| | 6.77
70 | 0.00 | |15.23 0.00 9.60 0.019| | 15.13 0.005| | 8.63

Table 2: Performance comparison using the CPU and |S]|.

Coded with Python 3.5, Cplex 12.6.3 and run in CPU Intel Core i5 2.4Ghz 8GB RAM
CPU’time of H1 and H2 always nearly zero.
CPU’time of H4 < H3, because UB(upper bound) of H4 < H3 (LPT-FAM improve).
Value |S| : H1 > H3 > H2 > H4 (H4 use exact method)
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Computational results

H1 H2 H3 H4

T % GD H %S| GD H % GD H %‘ GD H

10 12983 0.86 24.21 |36.94 0.68 17.90 |33.28] 0.82 25.66| 28.3§3 0.89 21.11I
20 | 1444 1.39 37.39 128.85% 0.91 11.52 |18.85] 1.39 36.31)] 12.0 1.24  19.95
30 | 6.09] 1.86 40.94 |25.1 1.06 10.37 | 7.08| 1.89 40.54| 9.8 1.44  21.23
40 | 1.78| 2.02 41.13 |27.0 1.12  7.86 |1.84] 2.06 41.58| 9.6 1.43  20.07
50 | 1.01) 247 44.52 |37.0 1.01  5.65 |1.21] 248 44.50| 14.5 1.53 17.69
70 | 0.700 3.09 45.30 |35.74 096 4.77 |0.70| 3.10 45.29] 14.1 1.39 10.51

Table 3: Performance comparison using the %S, GD and H.

» %0S: this metric calculates the number of exact solutions generated
given by |[SNSx|/|S|.
» GD: generational distance.

» H: Hypervolume calculates the area dominated by some front.
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Conclusions and Perspectives

¢ Multi-agent scheduling problems with common due date to minimize both
tardy jobs and makespan: P,,|ND,d?,Y U? < Qgz| CA .
» Two types of mathematical programming formulation based on :
precedence and time indexing decision variables.
» Proposed four heuristics for this NP-hard problem:
v" Polynomial heuristics: Algorithm H1, H2
v Pseudo-polynomial heuristics: Algorithm H3, H4 base on dymamic
programming

s Perspectives :
For further research, we will propose a genetic algorithm starting from the

solutions obtained by the heuristics. It would be also interesting to seek for

a pseudo-polynomial time algorithm.
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Thank you
for your attention!
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