26èmes journées STP du GDR MACS Clermont-Ferrand, 22-23 novembre 2018

Machine Learning in Production Planning and Control: A Literature Review

Juan Pablo Usuga Cadavid: juan_pablo.usuga_cadavid@ensam.eu

Samir Lamouri: samir.lamouri@ensam.eu Bernard Grabot: bernard.grabot@enit.fr Arnaud Fortin: a.fortin@ifakt.com

rislech

Production Planning & Control (PPC), context in Industry 4.0

Research

objective

Literature review

methodology

Results

Further research

Questions

References

Manufacturing context:

Context

Addressed

problem

- 67% of the companies from high-wages countries claim that the adherence to the delivery dates is their main logistical target
- They struggle to achieve that due to machine failures, missing raw materials or short-term customer changes
- Prerrequisite to reach logistical targets \rightarrow Excellent PPC processes

Production Planning & Control, challenges in Industry 4.0

Literature review

methodology

Research

objective

Production Planning & Control (PPC)

Context

Addressed

problem

Further research

Questions

References

Results

Research objectives (1/2): how to implement ML-aided PPC

Research

obiective

Literature review

methodology

Results

Further research

Mandatory Elements of a Method (Zellner, 2011)

Addressed

problem

Context

Which are the activities, techniques and tools used to deploy ML-aided PPC?

Questions

References

Results

Questions

Literature review methodology

Research

objective

Used keywords

Context

Addressed

problem

Results

		Step	Science Direct	SCOPUS	Kept Articles	Excluded
		First results	1538	611	2149	0
		Year >= 2011	761	356	1117	1032
("Deep Learning" OR "Machine Learning")	("Production scheduling") ("Production control") ("Line Balancing") ("Production Planning")	Only "Research Articles" (Science Direct) "Conference Paper OR Article" (SCOPUS)	606	299	905	212
		Title and Abstract Review	46	24	70	835
		Duplicates removal	32	15	47	23
		Full text analysis: short list	27	13	40	7

Literature review

methodology

Results Further research

Results (1/5): use types overview

Research

objective

Addressed

problem

Context

Literature review

methodology

Results Fur

Results (2/5): activities

Context

Addressed

problem

Research

objective

Literature review

methodology

Results Fur

Questions

Results (3/5): techniques

Addressed

problem

Research

objective

Literature review

methodology

% of publications by used learning types

Context

Number of uses per technique

Technique family

Juan Pablo Usuga Cadavid, Samir Lamouri, Bernard Grabot, Arnaud Fortin

Research

objective

Results

Results (4/5): tools

Tools	Number of uses
Not Mentioned	17
R	5
MATLAB	4
Python	3
RapidMiner	3
Tensorflow (Python	
based)	2
WEKA	2
ACE Datamining	
System	1
Clementine	1
Keras (Python	
based)	1
Neural-SIM	1
Visual C++	1
Xelopes Library	1

Results (5/5): Data source utilization

Research

objective

Addressed

problem

Context

Literature review

methodology

Results

Further research

Questions

References

Context Addressed problem Research objective Literature review methodology Results Further research Questions References

Further research

- Develop a Robust Procedure to implement ML-aided PPC → Give an order to different activities
- Link techniques and tools to activities (set the basis to an Information Model)
- Test both previous points with an application

Research

objective

Questions

Questions?

References

Context

Addressed

problem

Research

objective

• Tao, F. *et al.* (2018) 'Data-driven smart manufacturing', *Journal of Manufacturing Systems*. The Society of Manufacturing Engineers, 48, pp. 157–169. doi: 10.1016/j.jmsy.2018.01.006.

Literature review

methodology

Results

Further research

Questions

References

• Reuter, C. *et al.* (2016) 'Improving Data Consistency in Production Control by Adaptation of Data Mining Algorithms', *Procedia CIRP*. The Author(s), 56, pp. 545–550. doi: 10.1016/j.procir.2016.10.107.