Towards Energy Efficient Scheduling and Rescheduling for Dynamic Flexible Job Shop Problem

Maroua NOUIRI, Abdelghani BEKRAR, Damien TRENTESAUX

¹LAMIH UMR CNRS 8201,Polytechnic University of France UPHF Journée STP 22-23 novembre 2018, Clermont-Ferrand, France

- 2 State of the art
- 3 Contributions
- 4 Case study
- **6** Experimental results
- 6 Conclusion and Future works

- 2 State of the art
- 3 Contributions
- 4 Case study
- 5 Experimental results
- 6 Conclusion and Future works

 \measuredangle Factories of the future (FoF) are key economic driver for the society.

 \bigstar Urgent need for sustainable development : balancing economic, environmental and social impacts.

Green Manufacturing

▲ Energy aware production scheduling and rescheduling system : EAPSRS.

➤ One of the most studied problem : Flexible Job Shop Scheduling Problem (FJSSP)

• Flexible Job Shop Scheduling Problem

Machine

- Disruptions affect the original schedule : random job arrival, machine breakdown,
- Rescheduling is needed.

Green Manufacturing

➤ Propose an energy efficient scheduling and rescheduling model for dynamic FJSP.

- 2 State of the art
- 3 Contributions
- Case study
- 5 Experimental results
- 6 Conclusion and Future works

State of the art

Static Scheduling (without perturbation)

- Centralized approaches : based on one decision entity
 ▲ GA :Kacem et al, 2002; Pezzellaa et al, 2008; Zhang et al, 2012.
 ▲ PSO : Venter et al, 2005; Jia et al, 2007; Jun et al, 2009
 ▲ Hybridation : Xia et al, 2005; Zhang et al, 2009; He et al.2015
- Distributed approaches : Distributed scheduling decisions
 ▲ Multi Agent System : Chen et al, 2004; Azzouz et al, 2012; Ennigrou et al, 2008; Henchiri et al, 2013

Scheduling with energy optimization

▲ Raileanu et al.2017 : An agent-based approach for measuring real time energy consumption of resources for JSP.
▲ Gonzlez et al.2017 : Hybrid metaheuristic : GA + LS for JSP.
▲ He et al.2015 : An energy saving optimization method for FJSSP.

Dynamic Scheduling (with perturbation)

 $\not \sim$ Proactive approaches : offline, anticipation by taking into account knowledge of uncertainties

 ${\not\!\!\!\!/}_{\rm D}$ Reactive approaches : Online, Priority Dispatching Rule, MAS.

 \bigstar Hybrid approaches : Predictive reactive approaches FJSSP.

Rescheduling Methods

Right shifting Rule (RSR)
Viera el al.2003 : Affected Operation Rescheduling for FJP.
Nouiri et al.2017 : A predictive reactive approach to solve FJSSP.

Rescheduling Methods with energy optimization

 $\not \simeq$ Salido et al. 2016 : a new match-up technique and a genetic algorithm to solve JSSP.

 $\not \sim$ Zhang et al.2013 : new goal programming mathematical model to solve FJSSP.

 $\not \simeq$ Nouiri et al.2018 : Green Rescheduling Method (GRM) to solve FJSSP.

The designed approaches for energy optimization

 $\not \sim$ Giret et al.2017 : an engineering method to design sustainable intelligent manufacturing systems.

✓ Trentesaux et al.2016 : a set of key requirements when designing MAS/HMS architecture for future energy aware production scheduling systems.

- 2 State of the art
- 3 Contributions
 - 4 Case study
- 5 Experimental results
- 6 Conclusion and Future works

 \Rightarrow Propose a flexible system, able to make scheduling decisions and deal with unforeseen breakdowns.

- Objective Function : minimize the makespan value
- Improve the robustness and the stability of the solution

Particle Swarm Optimization

- The meta-heuristic used : Particle Swarm Optimization **Principle of PSO algorithm**
 - Creation of initial swarm.
 - Move these particles to find optimal solutions.
 - Iterative search of the global optimum
 - Output :Gloal Solution that optimizes an objective function.

Particle Swarm Optimization

• The meta-heuristic used : Particle Swarm Optimization Initialization methods

Objective function

 \mathbbm{Z}_{\mathbbm} minimize the makespan value

MAPSO2

 \measuredangle communication between agents

 \checkmark Migration phase to diversify the search space

Multi agent Particle Swarm Optimization

MAPSO₂

4. Send swarm / 2

Multi agent Particle Swarm Optimization

• MAPSO2 drawbacks

Multi agent Particle Swarm Optimization

• MAPSO2 drawbacks

Predictive Reactive approach

• Predictive Reactive approach : 2 Stage PSO

- Integrate the probability of the breakdown to perturb the predictive solution
- Evaluation of the solution with the robustness and the stability

Predictive Reactive approach

The Green Rescheduling Method

• The Green Rescheduling Method. The flow chart of the proposed GRM

A new initialization method "MinEnergy" is added.

The Green Rescheduling Method

• The Green Rescheduling Method

A new Green Rescheduling heuristic is proposed.

The energy Efficient Rescheduling Method

• Using Routing flexibilty

- Is composed by four heuristics.
- Each heuristic search to assign the operations either
 - Randomly (H1)
 - Minimum Earliest Method (H2)
 - ▶ Less machining energy (H3)
 - ▶ Less non-machining energy (H4)

Algorithm 1	1 :Green Rescheduling Method					
Input pa-	the prechedule p , machine failed m_b , start time of					
rameters :	breakdown st , duration of repair procedure d .					
Step 1 :	Extract <i>subparticle</i> that contains the directly and indirectly affected.					
Step 2 :	thod.					
Step 3 :	Construction of <i>swarm</i> that contains all particles					
	with the new assignments.					
Step 4 :	Re-Evaluate the fitness value F2 of all particles of					
	SwarmReschedule.					
Step 5 :	Output : Select best particle with lowest value of					
	Bi-objective function.					

• The energy Model : proposed in He et al.2015.

$$E = \frac{E_w}{E} + E_m$$

• E_w : the non-machining idle energy of machines;

$$E_w = P_0 * t_w$$

• P_0 : the machine idle power;

• t_w : the idle wait time for before processing the new operation.

• The energy Model : proposed in He et al.2015.

 $E = \underline{E}_w + \underline{E}_m$

• E_w : the non-machining idle energy of machines;

 $E_w = P_0 * t_w$

• P_0 : the machine idle power;

t_w : the idle wait time for before processing the new operation.

• E_m : the machining energy of operations.

$$E_m = E_s + E_c$$

- $\blacksquare E_s : \text{the idle energy during job setup};$
- E_c : the cutting energy.

• The energy Model : proposed in He et al.2015.

 $E = \underline{E}_w + \underline{E}_m$

• E_w : the non-machining idle energy of machines;

$$E_w = P_0 * t_w$$

• P_0 : the machine idle power;

t_w : the idle wait time for before processing the new operation.

• E_m : the machining energy of operations.

$$E_m = E_s + E_c$$

- E_s : the idle energy during job setup;
- \blacksquare E_c : the cutting energy.

$$\mathbb{Z}_{\mathbb{T}}F_3 = \min \sum_{i=1}^{N} \sum_{j=1}^{j_n} \sum_{m=1}^{M} E_{ijm} + \sum_{m=1}^{M} P_{0m} * t_{wm}$$

Rescheduling performance measures

• Makespan Efficiency : the percentage change in makespan of the reschedule compared to the original schedule.

$$\eta = 1 - \frac{M_{new} - M_0}{M_0} * 100$$

• M_{new} : the makespan of the repaired schedule using GRM;

Rescheduling performance measures

• Makespan Efficiency : the percentage change in makespan of the reschedule compared to the original schedule.

$$\eta = 1 - \frac{M_{new} - M_0}{M_0} * 100$$

- M_{new} : the makespan of the repaired schedule using GRM;
- M_0 : the makespan of the original schedule.

• Makespan Efficiency : the percentage change in makespan of the reschedule compared to the original schedule.

$$\eta = 1 - \frac{M_{new} - M_0}{M_0} * 100$$

- M_{new} : the makespan of the repaired schedule using GRM;
- M_0 : the makespan of the original schedule.
- Energy Efficiency : the percentage change in energy consumed of the repaired schedule compared to the original schedule.

$$\lambda = 1 - \frac{E_{new} - E_0}{E_0} * 100$$

• E_{new} : the energy consumption of the repaired schedule using GRM;

• Makespan Efficiency : the percentage change in makespan of the reschedule compared to the original schedule.

$$\eta = 1 - \frac{M_{new} - M_0}{M_0} * 100$$

- M_{new} : the makespan of the repaired schedule using GRM;
- M_0 : the makespan of the original schedule.
- Energy Efficiency : the percentage change in energy consumed of the repaired schedule compared to the original schedule.

$$\lambda = 1 - \frac{E_{new} - E_0}{E_0} * 100$$

- E_{new} : the energy consumption of the repaired schedule using GRM;
- E_0 : the initial energy consumption of the original schedule.

Scenario 1 : Energy consumption Optimization
 Δ The weighting parameter γ is equal to 0.

Scheduling	Total Energy	Makespan
Method	(W h)	(\min)
Our GRM	$1495,\!44$	45.5
He et al. 2015	1668.72	42.7

Interpretation

The GRM provides solution with the lowest total energy 1495,44 W h.

■ 98.33% of the total energy consumption was associated with machining and only 1.67% was spent on machine idling

 \blacksquare The percentage of total energy saving is 11.58%.

Scenario 2 : Makespan Optimization
 Δ The weighting parameter γ is equal to 1.

Scheduling	Total Energy	Makespan
Method	(W h)	(\min)
Our CDM	$1931,\!63$	35.3
Our Grim	1724.36	35.3
He et al. 2015	$2137,\!95$	35.3

Interpretation

- \blacksquare The GRM provides 10,68% total energy saving.
- The GRM provide better percentage of total energy saving (23,98%) when swarmsize=2000, Maxiteration =1500.

• Scenario 3 : tradeoff between energy consumption Optimization and makespan

 \bigstar The weighting parameter γ is equal to 0.6 and 0.3

Scheduling	Total Energy	Makespan
Method	(W h)	(\min)
Our CDM	1746.85	38.1
Our Grim	1626.11	44.3
He et al. 2015	1672.02	40.1

Interpretation

The GRM finds the best solution in terms of makespan value (38.1)
An improvement of the total energy consumption (3%).
when makespan 44.3 is tolerated, there would be 18.78% energy saving.

A machine with a heavy workload is more likely to breakdown.

Interpretation

The GRM finds the best solution in terms of makespan value (38.1)
The GRM provides better results compared to RSR.
The energy efficiency is improved from 85.80% to 91.32%.
The makespan efficiency is improved from 93.82% to 100%.

• MA-EAPSRS :

• The predictive part of MA-EAPSRS :

The predictive part of MA-EAPSRS : •

• The reactive part of MA-EAPSRS :

• The reactive part of MA-EAPSRS :

• The reactive part of MA-EAPSRS :

- 2 State of the art
- 3 Contributions
- 4 Case study
- **5** Experimental results
- 6 Conclusion and Future works

Assumptions

 \checkmark The smart multi agent system is composed of :

- two factory scheduler agents;
- one energy scheduler agent;
- a monitoring agent.

 \bigstar The two manufacturing plants are homogeneous.

 $\not \sim$ There is only one energy provider of <u>one</u> type of renewable energy.

Case study

• The meta-heuristic used : Particle Swarm Optimization Initialization methods

Objective function

$$F_1 = \gamma \min \frac{makespan}{summakespan} + (1 - \gamma) \frac{SumEnergy}{MaxEnergy}$$

The energy Model

$$E = \frac{E_w}{E_w} + E_m$$

- E_w : the non-machining idle energy of machines;
- E_m : the machining energy of operations.

Case study

• The Rescheduling Method used :

Green Rescheduling Method proposed in Nouiri et al.2018

- Is composed by four heuristics.
- Each heuristic search to assign the operations either
 - Randomly
 - Minimum Earliest Method
 - Less machining energy
 - Less non-machining energy

Case study

- The negotiation protocol : is a key form of interactions.
- It is a cooperative negotiation.
- Find an agreement of the value of the weighting parameter.

- Send proposal : "new value of γ.
- If no agreement : γ is reduced by a value α.
- Favour the reduction of energy consumption.

- 2 State of the art
- 3 Contributions
- Case study
- **6** Experimental results
 - 6 Conclusion and Future works

- MA-EAPSRS's results of first scenario
 - ≤ Using the same weighting parameter γ equals to 0.9. ≤ Sum of energy Demands $ED_i < 4000 Wh$.

Factory scheduler 1		Factory Scheduler 2		Energy schedu-		
					ler's message	
γ	Makespan	Energy	γ	Makespan	Energy	
		consumption			consumption	
0.9	35.3	2777.19	0.9	35.3	2899.61	Solve Conflict
						situation
0.8	35.3	2599.52	0.8	37.4	1852.43	Solve Conflict
						situation
0.7	35.3	2599.52	0.7	37.4	1852.43	Solve Conflict
						situation
0.6	39.9	1806.15	0.6	37.4	1852.43	Scheduling Ap-
						proved

Interpretation

- **Negotiation** phase to find an **agreement** of the value of weighting parameter.
- The Energy agent sends a scheduling approved message when γ equals 0.6.

MA-EAPSRS's results of second scenario
 ∠ Using different γ values choosing randomly between 1 and 0.7.
 ∠ Sum of energy Demands ED_i < 4000 Wh.

Factory scheduler 1		Factory Scheduler 2			Energy schedu-	
						ler's message
γ	Makespan	Energy	γ	Makespan	Energy	
		consumption			consumption	
1	35.3	2555.27	0.7	37.4	1852.43	Solve Conflict
						situation
0.6	38.1	1806.15	0.6	46.0	1697.299	Scheduling ap-
						proved

Interpretation

- \blacksquare The predicted schedule of FS 1 has a high energy consumption compared to the FS 2.
- The first proposal of FS 1 "Rescheduling with γ equals to 0.9" is rejected by FS 2.
- \clubsuit The FS 2 sends another one "Rescheduling with γ equals to 0.6 which is accepted by FS 1.
- The Energy agent sends a scheduling approved message when γ equals 0.6.

- 2 State of the art
- 3 Contributions
- Case study
- 5 Experimental results
- **(6)** Conclusion and Future works

• Conclusion

- ▶ the proposed MAPSO2 and its embedded implementation
- ▶ The proposed 2s PSO
- ▶ Green Rescheduling Method(GRM) was proposed
- Find a feasible schedule that minimizes both makespan and energy consumption
- Multi agent agent approach to solve energy aware production scheduling and rescheduling systems : MA-EAPSRS.
 - Hybrid approach combining the predictive and the reactive phase.
 - Takes into account sustainability in both parts.
 - Generic, suitable to smart grid infrastructure.
 - Can be applied to different real manufacturing problems.
- A case study was presented.

- Interesting direction for future researches
- Develop an integrated hyper rescheduling method with different heuristics in a distributed way with a reconfiguration system to switch from one to another according to the state of the system.
- Integrate the "MA-EAPSRS" architecture on physically distributed system composed of embedded systems while using internet of thing (IoT).

Publications

• International Journal

- Nouiri, M., Bekrar, A., Jemai, A., Trentesaux D., Ammari, A. C, Niar, S (2017). Two Stage Particle Swarm Optimization to solve the flexible job predictive scheduling problem considering possible machine breakdowns. Computers and Industrial Engineering. V (112), pp 595-606.
- Nouiri, M., Bekrar, A., Jemai, A., Niar, S., Ammari, A. C (2015). An effective and distributed particle swarm optimization to solve flexible job shop scheduling problem. Journal of Intelligent Manufacturing, 29(3), pp 603-615.

• International Conferences

- Nouiri, M., Trentesaux D., Bekrar, A., Giret, A., Salido, M.A., (2018). Cooperation between smart manufacturing scheduling systems and energy providers : a multi agent perspective. SOHOMA, 11-12 June, Bergamo Italy.
- Nouiri, M., Bekrar, A., Trentesaux D. (2018). Towards Energy Efficient Scheduling and Rescheduling for Dynamic Flexible Job Shop Problem. Accepted paper in IFAC Symposium on Information Control Problems in Manufacturing, 11-13 June, Bergamo Italy.
- Nouiri, M., Bekrar, A., Trentesaux D. (2018). Inventory Control under Possible Delivery Perturbations in Physical Internet Supply Chain Network. Accepted in IPIC Conference, 18-22 Juin
- Nouiri, M., Bekrar, A., Jemai, A., Trentesaux D., Ammari, A. C, Niar, S (2017). A new rescheduling heuristic for flexible job shop problem with machine disruption. *Studies in Computational Intelligence*, Springer, 762, pp461-476.
- Nouiri, M., Jemai A., Chiheb A., Bekrar A., Trentesaux D., Niar S. (2016). Using IoT in breakdown tolerance : PSO solving FJSP. International Design and Test Symposium (IEEE),18-20 Décembre, Hammamet, Tunisia, pp. 19-24.
- Chaib draa I., Nouiri, M., Niar S., Bekrar A. (2016). Device Context Classification for Mobile Power Consumption Reduction. Digital System Design, Euro Micro, 31 Octobre-2 Septembre, Limassol Cyprus.
- Nouiri, M., Bekrar, A., Jemai, A., Trentesaux D., Niar, S., Ammari, A. C. (2015). An improved multi agent particle swarm optimization to solve flexible job shop scheduling problem.Inter. Conf. on Computers and Industrial Engineering. Octobre 28-30, Metz, France. pp. 297-304.
- Nouiri, M., Jemai, A., Bekrar, A., Niar, S., Ammari, A. C. (2013). An effective particle

$\mathcal{T}hank\ \mathcal{Y}ou\ \mathcal{F}or\ \mathcal{Y}our\ \mathcal{A}ttention...$

Towards Energy Efficient Scheduling and Rescheduling for Dynamic Flexible Job Shop Problem

M. Nouiri, D. Trentesaux, A. Bekrar

maroua.nouiri@uphf.fr

